
15-112 Practice Quiz 3

Code Tracing
def ct1(L):
 a = L
 b = copy.copy(L)
 c = copy.deepcopy(L)
 a[0] = b[1]
 b[1][1] = c[0]
 c[1].append(b[1]) #a → [[3], [3]] b→ [[1], [3]] c ⇒ [[1], [2, 5, [3]]]
 a[0][0] += (b[1].pop())[0]
 return (a,b,c)
Be careful to get the brackets
and commas right!
for val in ct1([[1],[2,5]]):
 print(val) # prints 3 lines

Reasoning Over Code
def r(n, row):
 a = [([0] * n) for r in range(n)]
 counter = 1 # note: start at 1 not 0!
 for c in range(n): # note: col first
 for r in range(n):
 a[r][c] = counter
 counter += 1
 return (a[row] == [3, 7, 11, 15])

Big-Oh

def f1(n):
 L = [0] * n
 while (n > 0):
 for i in range(len(L)):
 L[i] += i ** 2
 n //= 2
 return L

O(______________)

def f2(n):
 k=1
 while (k**2 < n):
 k += 1
 return k

O(______________)

 ​def f3(n):
 k=1
 while (n > 0):
 (n, k) = (n//4, k+1)
 return k

O(______________)

def f4(n):
 k=1
 for i in range(n, n**2):
 for j in range(n**3):
 k += 1
 return k

O(______________)

def f5(n):
 k=1
 for i in range(n, n**2):
 k += 1
 for j in range(n**3):
 k += 1
 return k

O(______________)

Short Answers:
Give a brief explanation and the bigO of linearSearch, binarySearch,
selectionSort, and bubbleSort

Give a brief explanation and the bigO of mergeSort (picture is acceptable)

Fill in the blank
def binarySearch(L, target):
 start = 0
 end = len(L) - 1
 while(start <= end):
 middle = _______________
 if(__________________):
 return True
 elif(____________________):
 end = middle-1
 else:
 start = middle+1
 return False

def selectionSort(a):
 n = len(a)
 for startIndex in range(n):
 minIndex = _______________
 for i in range(startIndex+1, n):
 if (____________________):
 minIndex = i
 swap(a, startIndex, minIndex)

Free Response
isFoiled(L)
Write the non-destructive function isFoiled(L) that takes a rectangular 2d
list of ints L and returns True if L is foiled (a coined term) and False
otherwise, where a list is foiled if every row in L is equal (==) to some
column in L, where rows are read left-to-right and columns are read
top-to-bottom.
For example, consider this list:
 [[1, 1, 2],
 [2, 1, 1],
 [1, 2, 1]]
Row0 is [1,1,2] which equals col1.
Row1 is [2,1,1] which equals col2.
Row2 is [1,2,1] which equals col0.
So this list is foiled.

wordSearchWithWrapAround()
Write wordSearchWithWrapAround(), defined as wordSearch, with the sole
difference being, for the following board,
board = [['z', 'e', 'v'],
 ['t', 'c', 'a'],
 ['w', 'q', 't']]
wordSearchWithWrapAround(board, ‘cat’) would be: “cat, (1, 1), right”
So, essentially, it still goes in a particular direction, except it can wrap
around the board, so that when going to the right, after the 2nd col (in the
example above), it would continue to the 0th col to reach the letter ‘t’ and
complete the word.
Note: You only need to redefine a single function from the framework of
wordSearch() as defined in the class notes. You got this

